Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2982, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582785

RESUMEN

Paternal diet can influence the phenotype of the next generation, yet, the dietary components inducing specific responses in the offspring are not identified. Here, we use the Nutritional Geometry Framework to determine the effects of pre-conception paternal dietary macronutrient balance on offspring metabolic and behavioral traits in mice. Ten isocaloric diets varying in the relative proportion of protein, fats, and carbohydrates are fed to male mice prior to mating. Dams and offspring are fed standard chow and never exposed to treatment diets. Body fat in female offspring is positively associated with the paternal consumption of fat, while in male offspring, an anxiety-like phenotype is associated to paternal diets low in protein and high in carbohydrates. Our study uncovers that the nature and the magnitude of paternal effects are driven by interactions between macronutrient balance and energy intake and are not solely the result of over- or undernutrition.


Asunto(s)
Dieta , Padre , Humanos , Masculino , Femenino , Ratones , Animales , Ingestión de Energía , Nutrientes , Carbohidratos , Grasas de la Dieta , Dieta Alta en Grasa
2.
Physiol Behav ; 279: 114533, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552707

RESUMEN

Increasing evidence suggests that the pre-conception parental environment has long-term consequences for offspring health and disease susceptibility. Though much of the work in this field concentrates on maternal influences, there is growing understanding that fathers also play a significant role in affecting offspring phenotypes. In this study, we investigate effects of altering the proportion of dietary fats and carbohydrates on paternal and offspring body composition and anxiety-related behavior in C57Bl/6-JArc mice. We show that in an isocaloric context, greater dietary fat increased body fat and reduced anxiety-like behavior of studs, whereas increased dietary sucrose had no significant effect. These dietary effects were not reflected in offspring traits, rather, we found sex-specific effects that differed between offspring body composition and behavioral traits. This finding is consistent with past paternal effect studies, where transgenerational effects have been shown to be more prominent in one sex over the other. Here, male offspring of fathers fed high-fat diets were heavier at 10 weeks of age due to increased lean body mass, whereas paternal diet had no significant effect on female offspring body fat or lean mass. In contrast, paternal dietary sugar appeared to have the strongest effects on male offspring behavior, with male offspring of high-sucrose fathers spending less time in the closed arms of the elevated plus maze. Both high-fat and high-sugar paternal diets were found to reduce anxiety-like behavior of female offspring, although this effect was only evident when offspring were fed a control diet. This study provides new understanding of the ways in which diet can shape the behavior of fathers and their offspring and contribute to the development of dietary guidelines to improve obesity and mental health conditions, such as anxiety.


Asunto(s)
Grasas de la Dieta , Azúcares , Ratones , Animales , Masculino , Femenino , Humanos , Grasas de la Dieta/farmacología , Padre , Ansiedad/genética , Dieta Alta en Grasa/efectos adversos , Composición Corporal
3.
Obesity (Silver Spring) ; 32(4): 743-755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328970

RESUMEN

OBJECTIVE: Exposure in utero to maternal diet can program offspring health and susceptibility to disease. Using C57BL6/JArc mice, we investigated how maternal dietary protein to carbohydrate balance influences male and female offspring appetite and metabolic health. METHODS: Dams were placed on either a low-protein (LP) or high-protein (HP) diet. Male and female offspring were placed on a food choice experiment post weaning and were then constrained to either a standard diet or Western diet. Food intake, body weight, and composition were measured, and various metabolic tests were performed at different timepoints. RESULTS: Offspring from mothers fed HP diets selected a higher protein intake and had increased body weight in early life relative to offspring from LP diet-fed dams. As predicted by protein leverage theory, higher protein intake targets led to increased food intake when offspring were placed on no-choice diets, resulting in greater body weight and fat mass. The combination of an HP maternal diet and a Western diet further exacerbated this obesity phenotype and led to long-term consequences for body composition and metabolism. CONCLUSIONS: This work could help explain the association between elevated protein intake in humans during early life and increased risk of obesity in childhood and later life.


Asunto(s)
Obesidad Infantil , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratones , Animales , Masculino , Femenino , Fenómenos Fisiologicos Nutricionales Maternos , Peso Corporal , Ingestión de Alimentos , Nutrientes , Dieta Occidental/efectos adversos
4.
J Nutr ; 154(1): 60-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984745

RESUMEN

BACKGROUND: Male reproduction is impacted by both over- and under-nutrition, demonstrated by animal studies using high-fat and low-protein dietary interventions. Little is known about the impacts of low-fat, high-carb diets and types of dietary carbohydrates on sperm traits. OBJECTIVES: Using a nutritional geometry approach, we investigated the effects of partially or completely substituting glucose for fructose in isocaloric diets containing either 10%, 20%, or 30% fat (by energy) on sperm traits in mice. METHODS: Male C57BL/6J mice were fed 1 of 15 experimental diets for 18 wk starting from 8 wk of age. Reproductive organs were then harvested, and sperm concentration, motility, and velocity were measured using Computer-Assisted Sperm Analysis. RESULTS: Increasing dietary fat from 10% to 30% while maintaining energy density at 14.3 kJ/g and protein content at 20% resulted in increased body weight and sperm production but reduced the percentage of motile sperm. Body weight and seminal vesicle weight were maximized on diets containing a 50:50 mix of fructose and glucose, but carbohydrate type had few significant impacts on epididymal sperm traits. CONCLUSIONS: The opposing impacts of dietary fat on mouse sperm quantity and quality observed suggest that male fertility may not be optimized by a single diet; rather, context-specific dietary guidelines targeted to specific concerns in semen quality may prove useful in treating male infertility.


Asunto(s)
Análisis de Semen , Semen , Masculino , Animales , Ratones , Recuento de Espermatozoides , Motilidad Espermática , Ratones Endogámicos C57BL , Espermatozoides , Grasas de la Dieta , Dieta con Restricción de Grasas , Glucosa , Aumento de Peso , Fructosa , Peso Corporal
5.
Cell Rep ; 42(12): 113536, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060447

RESUMEN

Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.


Asunto(s)
Apetito , Factores de Crecimiento de Fibroblastos , Ratones , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Conducta Alimentaria , Metabolismo Energético , Hígado/metabolismo
6.
Nat Commun ; 14(1): 4409, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479702

RESUMEN

The metabolic effects of sugars and fat lie at the heart of the "carbohydrate vs fat" debate on the global obesity epidemic. Here, we use nutritional geometry to systematically investigate the interaction between dietary fat and the major monosaccharides, fructose and glucose, and their impact on body composition and metabolic health. Male mice (n = 245) are maintained on one of 18 isocaloric diets for 18-19 weeks and their metabolic status is assessed through in vivo procedures and by in vitro assays involving harvested tissue samples. We find that in the setting of low and medium dietary fat content, a 50:50 mixture of fructose and glucose (similar to high-fructose corn syrup) is more obesogenic and metabolically adverse than when either monosaccharide is consumed alone. With increasing dietary fat content, the effects of dietary sugar composition on metabolic status become less pronounced. Moreover, higher fat intake is more harmful for glucose tolerance and insulin sensitivity irrespective of the sugar mix consumed. The type of fat consumed (soy oil vs lard) does not modify these outcomes. Our work shows that both dietary fat and sugars can lead to adverse metabolic outcomes, depending on the dietary context. This study shows how the principles of the two seemingly conflicting models of obesity (the "energy balance model" and the "carbohydrate insulin model") can be valid, and it will help in progressing towards a unified model of obesity. The main limitations of this study include the use of male mice of a single strain, and not testing the metabolic effects of fructose intake via sugary drinks, which are strongly linked to human obesity.


Asunto(s)
Sacarosa en la Dieta , Azúcares , Humanos , Masculino , Ratones , Animales , Sacarosa en la Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Dieta/efectos adversos , Obesidad/metabolismo , Glucosa/farmacología , Fructosa/efectos adversos
7.
Elife ; 112022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394259

RESUMEN

Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Ratones , Animales , Almidón , Obesidad , Dieta Alta en Grasa/efectos adversos , Insulina , Ratones Obesos , Ceramidas , Glucosa
8.
Cell Metab ; 33(12): 2367-2379.e4, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34767745

RESUMEN

Nutrient sensing pathways influence metabolic health and aging, offering the possibility that diet might be used therapeutically, alone or with drugs targeting these pathways. We used the Geometric Framework for Nutrition to study interactive and comparative effects of diet and drugs on the hepatic proteome in mice across 40 dietary treatments differing in macronutrient ratios, energy density, and drug treatment (metformin, rapamycin, resveratrol). There was a strong negative correlation between dietary energy and the spliceosome and a strong positive correlation between dietary protein and mitochondria, generating oxidative stress at high protein intake. Metformin, rapamycin, and resveratrol had lesser effects than and dampened responses to diet. Rapamycin and metformin reduced mitochondrial responses to dietary protein while the effects of carbohydrates and fat were downregulated by resveratrol. Dietary composition has a powerful impact on the hepatic proteome, not just on metabolic pathways but fundamental processes such as mitochondrial function and RNA splicing.


Asunto(s)
Hígado , Metformina , Proteoma , Resveratrol , Sirolimus , Animales , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Ratones , Proteoma/metabolismo , Resveratrol/farmacología , Sirolimus/farmacología
9.
Nat Metab ; 3(6): 810-828, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34099926

RESUMEN

Reduced protein intake, through dilution with carbohydrate, extends lifespan and improves mid-life metabolic health in animal models. However, with transition to industrialised food systems, reduced dietary protein is associated with poor health outcomes in humans. Here we systematically interrogate the impact of carbohydrate quality in diets with varying carbohydrate and protein content. Studying 700 male mice on 33 isocaloric diets, we find that the type of carbohydrate and its digestibility profoundly shape the behavioural and physiological responses to protein dilution, modulate nutrient processing in the liver and alter the gut microbiota. Low (10%)-protein, high (70%)-carbohydrate diets promote the healthiest metabolic outcomes when carbohydrate comprises resistant starch (RS), yet the worst outcomes were with a 50:50 mixture of monosaccharides fructose and glucose. Our findings could explain the disparity between healthy, high-carbohydrate diets and the obesogenic impact of protein dilution by glucose-fructose mixtures associated with highly processed diets.


Asunto(s)
Dieta , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Metabolismo Energético , Homeostasis , Animales , Glucosa/metabolismo , Estado de Salud , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo , Almidón/metabolismo
10.
NPJ Aging Mech Dis ; 6: 8, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714562

RESUMEN

There is an unmet need and urgency to find safe and effective anti-obesity interventions. Our recent study in mice fed on obesogenic diet found that treatment with the alcohol aversive drug disulfiram reduced feeding efficiency and led to a decrease in body weight and an increase in energy expenditure. The intervention with disulfiram improved glucose tolerance and insulin sensitivity, and mitigated metabolic dysfunctions in various organs through poorly defined mechanisms. Here, integrated analysis of transcriptomic and proteomic data from mouse and rat livers unveiled comparable signatures in response to disulfiram, revealing pathways associated with lipid and energy metabolism, redox, and detoxification. In cell culture, disulfiram was found to be a potent activator of autophagy, the malfunctioning of which has negative consequences on metabolic regulation. Thus, repurposing disulfiram may represent a potent strategy to combat obesity.

11.
Cell Metab ; 32(2): 203-214.e4, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32413333

RESUMEN

Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.


Asunto(s)
Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Disulfiram/farmacología , Obesidad/tratamiento farmacológico , Animales , Dieta/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley
12.
J Physiol ; 598(11): 2081-2092, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198893

RESUMEN

KEY POINTS: Night time/active phase food restriction for 6 h impaired glucose intolerance in young male and female mice. Females displayed increased capacity for lipogenesis and triglyceride storage in response to a short daily fast. Females had lower fasting insulin levels and an increased potential for utilizing fat for energy through ß-oxidation compared to males. The need for the inclusion of both sexes, and the treatment of sex as an independent variable, is emphasized within the context of this fasting regime. ABSTRACT: There is growing interest in understanding the mechanistic significance and benefits of fasting physiology in combating obesity. Increasing the fasting phase of a normal day can promote restoration and repair mechanisms that occur during the post-absorptive period. Most studies exploring the effect of restricting food access on mitigating obesity have done so with a large bias towards the use of male mice. Here, we disentangle the roles of sex, food intake and food withdrawal in the response to a short-term daily fasting intervention, in which food was removed for 6 h in the dark/active phase of young, 8-week-old mice. We showed that the removal of food during the dark phase impaired glucose tolerance in males and females, possibly due to the circadian disruption induced by this feeding protocol. Although both sexes demonstrated similar patterns of food intake, body composition and various metabolic markers, there were clear sex differences in the magnitude and extent of these responses. While females displayed enhanced capacity for lipogenesis and triglyceride storage, they also had low fasting insulin levels and an increased potential for utilizing available energy sources such as fat for energy through ß-oxidation. Our results highlight the intrinsic biological and metabolic disparities between male and female mice, emphasizing the growing need for the inclusion of both sexes in scientific research. Furthermore, our results illustrate sex-specific metabolic pathways that regulate lipogenesis, obesity and overall metabolic health.


Asunto(s)
Ayuno , Intolerancia a la Glucosa , Animales , Composición Corporal , Femenino , Masculino , Ratones , Obesidad , Caracteres Sexuales
13.
J Gerontol A Biol Sci Med Sci ; 75(2): 278-285, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31198956

RESUMEN

Age-related changes in the liver sinusoidal endothelium, particularly the reduction in fenestrations, contribute to insulin resistance in old age. Metformin impacts on the aging process and improves insulin resistance. Therefore, the effects of metformin on the liver sinusoidal endothelium were studied. Metformin increased fenestrations in liver sinusoidal endothelial cells isolated from both young and old mice. Mice administered metformin in the diet for 12 months had increased fenestrations and this was associated with lower insulin levels. The effect of metformin on fenestrations was blocked by inhibitors of AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase, and myosin light chain kinase phosphorylation. Metformin led to increased transgelin expression and structural changes in the actin cytoskeleton but had no effect on lactate production. Metformin also generated fenestration-like structures in SK-Hep1 cells, a liver endothelial cell line, and this was associated with increased ATP, cGMP, and mitochondrial activity. In conclusion, metformin ameliorates age-related changes in the liver sinusoidal endothelial cell via AMPK and endothelial nitric oxide pathways, which might promote insulin sensitivity in the liver, particularly in old age.


Asunto(s)
Hígado/metabolismo , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Edad , Animales , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Resistencia a la Insulina , Metformina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Quinasa de Cadena Ligera de Miosina/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación
14.
Nat Metab ; 1(5): 532-545, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31656947

RESUMEN

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos/metabolismo , Regulación del Apetito , Esperanza de Vida , Animales , Femenino , Regulación de la Expresión Génica , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Serotonina/metabolismo , Triptófano/metabolismo
15.
Nutrients ; 11(8)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412601

RESUMEN

Protein and branched-chain amino acid (BCAA) intake are associated with changes in circulating BCAAs and influence metabolic health in humans and rodents. However, the relationship between BCAAs and body composition in both species is unclear, with many studies questioning the translatability of preclinical findings to humans. Here, we assessed and directly compared the relationship between circulating BCAAs, body composition, and intake in older mice and men. Body weight and body fat were positively associated with circulating BCAA levels in both mouse and human, which remained significant after adjustments for age, physical activity, number of morbidities, smoking status, and source of income in the human cohort. Macronutrient intakes were similarly associated with circulating BCAA levels; however, the relationship between protein intake and BCAAs were more pronounced in the mice. These findings indicate that the relationship between circulating BCAAs, body composition, and intakes are comparable in both species, suggesting that the mouse is an effective model for examining the effects of BCAAs on body composition in older humans.


Asunto(s)
Envejecimiento/sangre , Aminoácidos de Cadena Ramificada/sangre , Composición Corporal , Adiposidad , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/sangre , Peso Corporal , Humanos , Estudios Longitudinales , Masculino , Ratones Endogámicos C57BL , Factores Sexuales , Especificidad de la Especie , Factores de Tiempo
16.
FASEB J ; 33(7): 8033-8042, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30925066

RESUMEN

Recent research has shown significant health benefits deriving from high-dietary fiber or microbiome-accessible carbohydrate consumption. Compared with native starch (NS), dietary resistant starch (RS) is a high microbiome-accessible carbohydrate that significantly alters the gut microbiome. The aim of this study was to determine the systemic metabolic effects of high microbiome-accessible carbohydrate. Male C57BL/6 mice were divided into 2 groups and fed either NS or RS for 18 wk (n = 20/group). Metabolomic analyses revealed that plasma levels of numerous metabolites were significantly different between the RS-fed and NS-fed mice, many of which are microbiome-derived. Most strikingly, we observed a 22-fold increase in gut microbiome-derived tryptophan metabolite indole-3-propionate (IPA), which was positively correlated with several gut microbiota, including Allobaculum, Bifidobacterium, and Lachnospiraceae, with Allobaculum having the most consistently increased abundance of all the IPA-associated taxa across all RS-fed mice. In addition, major changes were observed for metabolites solely or primarily metabolized in the gut (e.g., trimethylamine-N-oxide), metabolites that have a significant entero-hepatic circulation (i.e., bile acids), lipid metabolites (e.g., cholesterol sulfate), metabolites indicating increased energy turnover (e.g., tricarboxylic acid cycle intermediates and ketone bodies), and increased antioxidants such as reduced glutathione. Our findings reveal potentially novel mediators of high microbiome-accessible carbohydrate-derived health benefits.-Koay,Y. C., Wali. J. A., Luk, A. W. S., Macia, L., Cogger, V. C., Pulpitel, T. J., Wahl, D., Solon-Biet, S. M., Holmes, A., Simpson, S. J., O'Sullivan, J. F. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites.


Asunto(s)
Microbioma Gastrointestinal , Almidón/farmacología , Alimentación Animal , Animales , Bacterias/metabolismo , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/sangre , Lípidos/sangre , Masculino , Metaboloma , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Solubilidad , Almidón/farmacocinética , Espectrometría de Masas en Tándem
17.
PLoS One ; 14(3): e0212796, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865648

RESUMEN

While there is a burgeoning interest in the effects of nutrition on systemic inflammatory diseases, how dietary macronutrient balance impacts local chronic inflammatory diseases in the mouth has been largely overlooked. Here, we used the Geometric Framework for Nutrition to test how the amounts of dietary macronutrients and their interactions, as well as carbohydrate type (starch vs sucrose vs resistant starch) influenced periodontitis-associated alveolar bone height in mice. Increasing intake of carbohydrates reduced alveolar bone height, while dietary protein had no effect. Whether carbohydrate came from sugar or starch did not influence the extent of alveolar bone height. In summary, the amount of carbohydrate in the diet modulated periodontitis-associated alveolar bone height independent of the source of carbohydrates.


Asunto(s)
Pérdida de Hueso Alveolar/etiología , Sacarosa en la Dieta/efectos adversos , Conducta Alimentaria , Periodontitis/etiología , Almidón/efectos adversos , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/patología , Proceso Alveolar/diagnóstico por imagen , Proceso Alveolar/patología , Animales , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/efectos adversos , Sacarosa en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Almidón/administración & dosificación
18.
Cell Rep ; 25(8): 2234-2243.e6, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463018

RESUMEN

Calorie restriction (CR) increases lifespan and improves brain health in mice. Ad libitum low-protein, high-carbohydrate (LPHC) diets also extend lifespan, but it is not known whether they are beneficial for brain health. We compared hippocampus biology and memory in mice subjected to 20% CR or provided ad libitum access to one of three LPHC diets or to a control diet. Patterns of RNA expression in the hippocampus of 15-month-old mice were similar between mice fed CR and LPHC diets when we looked at genes associated with longevity, cytokines, and dendrite morphogenesis. Nutrient-sensing proteins, including SIRT1, mTOR, and PGC1α, were also influenced by diet; however, the effects varied by sex. CR and LPHC diets were associated with increased dendritic spines in dentate gyrus neurons. Mice fed CR and LPHC diets had modest improvements in the Barnes maze and novel object recognition. LPHC diets recapitulate some of the benefits of CR on brain aging.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/farmacología , Envejecimiento/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Composición Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Restricción Calórica , Cognición/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Inflamación/patología , Masculino , Memoria/efectos de los fármacos , Ratones
19.
Cell Metab ; 24(4): 555-565, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693377

RESUMEN

Fibroblast growth factor 21 (FGF21) is the first known endocrine signal activated by protein restriction. Although FGF21 is robustly elevated in low-protein environments, increased FGF21 is also seen in various other contexts such as fasting, overfeeding, ketogenic diets, and high-carbohydrate diets, leaving its nutritional context and physiological role unresolved and controversial. Here, we use the Geometric Framework, a nutritional modeling platform, to help reconcile these apparently conflicting findings in mice confined to one of 25 diets that varied in protein, carbohydrate, and fat content. We show that FGF21 was elevated under low protein intakes and maximally when low protein was coupled with high carbohydrate intakes. Our results explain how elevation of FGF21 occurs both under starvation and hyperphagia, and show that the metabolic outcomes associated with elevated FGF21 depend on the nutritional context, differing according to whether the animal is in a state of under- or overfeeding.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Animales , Apetito , Proteínas en la Dieta/metabolismo , Metabolismo Energético , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Regulación de la Expresión Génica , Glucosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Fenotipo , Proteína Desacopladora 1/metabolismo
20.
Ageing Res Rev ; 31: 80-92, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27355990

RESUMEN

Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Cognición/fisiología , Conducta Alimentaria , Enfermedades Neurodegenerativas/dietoterapia , Animales , Encéfalo/metabolismo , Restricción Calórica , Dieta , Ingestión de Energía , Ayuno , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...